Monthly Archives: November 2009

Enumerating permutations

There are exactly n! different permutations of n numbers. This challenge was about writing a function which is able to enumerate all these permutations, i.e. function permute(n, idx) which is able to return permutation with index idx of n numbers. The requirement is of course that all these permutations must be unique – this is in order to go over all possible permutations.

Continue reading Enumerating permutations

Using the state design pattern to implement FSMs

The State design pattern is a very useful design pattern. In this article we will exploit it to provide a very slick and elegant implementation of a Finite State Machine (FSM).

First of all, a FSM consists of a finite number of states and a predefined set of rules defining the transitions between all these states. Each state can either ACCEPT or REJECT the input – the FSM accepts the input IFF it ends up on an accepting state at the end of execution. In our design, each state will be modeled by a distinct class derived from an abstract base State class. Each state class will also contain all of its relevant transition logic. This architecture will enable us to provide a very flexible, powerful, yet intuitive and simple, implementation of any FSM.

Continue reading Using the state design pattern to implement FSMs

Reset an array in constant time

Ever wondered how to reset an entire array of N elements in a constant slice of time? This post will introduce the algorithm along with an implementation.

Let me lay out the problem. There’s an array of N integers. We would like to be able to reset that array (set all elements to zero), in a set amount of time – regardless of the value of N. The reset operation should take the same amount of time whether it operates on 100 elements or 10,000 of them.

Continue reading Reset an array in constant time